C*-simplicity of Groups and Actions on Boundaries

Erik Babuschkin

November 8, 2022

Contents

1	The reduced C*-algebra of a group	1
2	The theorem of Kalantar and Kennedy	2
3	Strongly proximal actions	2
4	(F)-boundaries	3
5	Powers groups	4
6	Strongly hyperbolic actions	5
7	(H)-boundaries	5

1 The reduced C*-algebra of a group

Let *G* be a countable (discrete) group. Recall that the *complex group algebra* $\mathbb{C}[G]$ of *G* is the set of all finitely supported functions $f: G \to \mathbb{C}$ endowed with the operations

$$(f+g)(x) = f(x) + g(x)$$
, and
 $(f*g)(x) = \sum_{y \in G} f(y)g(y^{-1}x).$

Observation 1.1. Each $\varphi \in \mathbb{C}[G]$ acts as a bounded linear operator λ_{φ} on the Hilbert space

$$\ell^2(G) = \{f \colon G \to \mathbb{C} \mid \sum_{y \in G} |f(x)|^2 < \infty\}$$

by left convolution: $\lambda_{\varphi}f = \varphi * f$.

Definition 1.2. The *reduced* C^* *-algebra* $C^*_r(G)$ of G is the norm closure of the image of the *left regular representation*

$$\lambda \colon \mathbb{C}[G] \to \mathscr{B}(\ell^2(G))$$
$$\varphi \mapsto \lambda_{\varphi}.$$

If $C_r^*(G)$ is simple, i. e. it has no non-trivial two-sided ideals, then *G* is said to be C*-simple.

Some conventions:

- *G* is always a (discrete) countable group with identity element *e*;
- *K* is a *compact* Hausdorff space;
- *L* is a Hausdorff space which is not necessarily compact.
- All group actions $G \curvearrowright K$ and $G \curvearrowright L$ are assumed to be continuous.

2 The theorem of Kalantar and Kennedy

Definition 2.1. We say that an action $G \curvearrowright L$ is

- (*i*) *minimal*, if \emptyset and *L* are the only invariant closed subsets of $G \curvearrowright L$;
- (*ii*) *topologically free*, if for all $g \in G \setminus \{e\}$ the set

$$\operatorname{Fix}_{L}(g) = \{x \in X \mid g.x = x\}$$

has empty interior in *L*.

Theorem 2.2 (Kalantar–Kennedy, 2014). The following are equivalent.

- (i) *G* is C*-simple;
- (ii) There is an action $G \curvearrowright K$ which is
 - (a) *minimal;*
 - (b) strongly proximal;
 - (c) topologically free.

3 Strongly proximal actions

Let $\mathcal{M}(K)$ be the space of all Radon probability measures on *K* endowed with the *weak topology*. This is the coarsest topology such that all of the functions

$$T_f\colon \mu\mapsto \int_K f\,\mathrm{d}\mu$$

for $f \in C(K)$ are continuous.

4 (F)-boundaries

Fact 3.1. The function δ sending $x \in K$ to its Dirac measure $\delta_x \in \mathcal{M}(K)$ is a topological embedding of *K* into $\mathcal{M}(K)$ called the *Dirac embedding*.

For compact Hausdorff spaces *X* and *Y* and a continuous function $f: X \to Y$, the *pushforward* of $\mu \in \mathcal{M}(X)$ along *f* is the measure $f_{\#}\mu \in \mathcal{M}(Y)$ defined by

$$(f_{\#}\mu)(A) = \mu(f^{-1}(A)) \quad (A \in \mathcal{B}(Y)).$$

The function

$$f_{\#} \colon \mathscr{M}(X) \to \mathscr{M}(Y)\mu \qquad \mapsto f_{\#}\mu$$

is called the *pushforward map* of *f*.

Given a group action $G \curvearrowright K$, we can define an action $G \curvearrowright \mathcal{M}(K)$ as follows: For each $g \in G$, let ρ_g denote the function $x \mapsto g.x$. Then for $\mu \in \mathcal{M}(K)$ we put $g.\mu = (\rho_g)_{\#}\mu$. The action of G on $\mathcal{M}(K)$ thus obtained is said to be *induced* by $G \curvearrowright K$. Observe that for $x \in K$ we have $g.\delta_x = \delta_{g.x}$, which means that δ is G-equivariant.

Definition 3.2. An action $G \curvearrowright K$ is *strongly proximal*, if the closure of each orbit of the induced action $G \curvearrowright \mathcal{M}(K)$ contains a Dirac measure.

Exercise 3.3. Can there be a strongly proximal action $G \sim [-1, 1]$?

No! The subset $\{-1,1\}$ is invariant under every homeomorphism, as it is the unique subset of cardinality 2 with connected complement. Hence the measure $(\delta_{-1} + \delta_1)/2$ of $\mathcal{M}([-1,1])$ is a global fixed point of the induced action without being a Dirac measure.

4 (F)-boundaries

Definition 4.1. An action $G \curvearrowright K$ is called an (F)-boundary (action) for *G*, if it is minimal and strongly proximal.

With this terminology, the theorem of Kalantar and Kennedy states that G is C*-simple if and only if it has a topologically free (F)-boundary action. Note that this terminology is non-standard: We use the (F) to distinguish between different kinds of boundaries for groups.

Fact 4.2. (F)-boundaries have a rich structure. Here is a quick summary:

• The homeomorphism classes of (F)-boundaries for *G* form a complete lattice¹ with respect to the ordering

 $A \leq B$ if and only if "there is a *G*-equivariant continuous function $B \rightarrow A$ ".

• The least element of this lattice is always the class of the one-point space. The greatest element is the class of a space which is called the *Furstenberg boundary* of *G*, named after Harry Furstenberg who developped this boundary theory.

¹Experts will notice the obliviousness of this statement regarding set-theoretic issues. In this case all issues can be resolved, as the minimality of the action gives an upper bound on the cardinality of an (F)-boundary. (Proof: Exercise)

5 Powers groups

Definition 5.1. *G* is said to be a *Powers group* if $G \neq \{e\}$ and for all finite subsets $F \subseteq G \setminus \{e\}$ and $N \in \mathbb{N}$, there is a partition $G = C \sqcup D$ and $\gamma_1, \gamma_2, ..., \gamma_N \in G$ such that

1.
$$f \cdot C \cap C = \emptyset$$
 for all $f \in F$;

2. $\gamma_i D \cap \gamma_i D = \emptyset$ whenever $i \neq j$.

Exercise 5.2 (For participants of the Random Walks School). Prove that Powers groups admit a paradoxical decomposition and are therefore not amenable.

$$G = C \cup aA = C \cup bB.$$

to obtain mutually disjoint sets A, B and C with the property that

$$^{\Gamma-}({}_{\mathcal{C}}\gamma^{\Gamma-}\gamma^{\Gamma}\gamma) = d \quad G_{\mathcal{C}}\gamma^{\Gamma-}\gamma^{\Gamma-}\gamma = d \quad ^{\Gamma-}({}_{\mathcal{C}}\gamma^{\Gamma-}\gamma^{\Gamma-}\gamma) = n \quad G_{\mathcal{C}}\gamma^{\Gamma-}\gamma^{\Gamma-}\gamma = h$$

 $\gamma_1, \gamma_2, \gamma_3$ with the properties from the definition. We obtain a partition $G = C \sqcup D$ and elements $f \neq e$ of G and N = 3. We obtain a partition $G = C \sqcup D$ and elements **Let** $F = \{f\}$ with the properties from the definition. Now put

Proof. See de la Harpe's survey.

Remark 5.4. The converse is not true! It can be shown that direct products of C*-simple groups are again C*-simple. However, non-trivial direct products of Powers groups are never Powers groups due to an argument by Promislow, which is reproduced in de la Harpes survey.

There is a criterion for determining Powers groups in terms of the dynamics of an action on a Hausdorff space, which will furnish us with many examples.

Definition 5.5. An action $G \curvearrowright L$ is *strongly faithful* if for all finite subsets $F \subseteq G \setminus \{e\}$ there is some $x \in L$ with $f.x \neq x$ for all $f \in F$.

Theorem 5.6 (de la Harpe, 1983). *If* $G \sim L$ *is*

- (i) minimal;
- (ii) strongly hyperbolic;
- (iii) strongly faithful;

then G is a Powers group.

Again, minimality and strong faithfulness control the size of the space *L*. We have not seen a definition for strong hyperbolicity yet. This will be given in the next section.

6 Strongly hyperbolic actions

Definition 6.1. We give the definition of strongly hyperbolic actions in three steps.

(*i*) A homeomorphism $\gamma: L \to L$ has *north-south dynamics* if it has two distinct fixed points *r* and *a* such that for any two neighborhoods *R* of *r* and *A* of *a*, there is some $n_0 \in \mathbb{N}$ such that

$$\gamma^n(L \setminus R) \subseteq A$$
 and $\gamma^{-n}(L \setminus A) \subseteq R$

for all $n \ge n_0$.

(*ii*) Two homeomorphisms γ and γ' from *L* to *L* with north-south dynamics are *transverse* if

$$\operatorname{Fix}_{L}(\gamma) \cap \operatorname{Fix}_{L}(\gamma') = \emptyset.$$

(*iii*) An action $G \curvearrowright L$ is *strongly hyperbolic* if *G* has infinitely many elements which act as mutually transverse homeomorphisms with north-south dynamics.

Exercise 6.2. Show that $G \curvearrowright L$ is strongly hyperbolic if there are *two* elements of *G* which act as transverse homeomorphisms with north-south dynamics.

 $M \ge n$ If $n \in \mathbb{N}$.

$$\{\mathcal{I}_{u}^{\mathsf{I}}\mathcal{A}'\mathcal{V}_{u}^{\mathsf{I}}\mathcal{A}\} = ({}^{u}\mathcal{Q})^{\mathsf{T}}\mathbf{X}\mathbf{i}\mathbf{H} = {}^{u}\mathbf{d}$$

 $\mathbf{b}^{\mathbf{i}} \cup \mathbf{b}^{\mathbf{j}} \neq \mathbf{0}$, where

Let γ_1 and γ_2 be two elements which act as transverse homeomorphisms with north-south dynamics. We dynamics. Let $F_1 \times_L (\gamma_1) = \{r, a\}$. The action of $\delta_n = \gamma_1^n \gamma_2 \gamma_1^{-n}$ again has north-south dynamics. We want to show that there is an infinite subset $A \subseteq \mathbb{N}$ such that the elements of $\{\delta_n \mid n \in A\}$ act as mutually transverse homeomorphisms with north-south dynamics. Assume the contrary and derive a contradiction by showing that for each $i \in \mathbb{N}$, there can be at most one $j \neq i$ such that derive a contradiction by showing that for each $i \in \mathbb{N}$, there can be at most one $j \neq i$ such that

7 (H)-boundaries

Definition 7.1. An action $G \curvearrowright L$ is called an (*H*)-*boundary* (action) for *G* if it is minimal and strongly hyperbolic.

Theorem 7.2. (*B*.) Let $G \curvearrowright L$ be an (*H*)-boundary for *G*. Then

- (i) $G \curvearrowright L$ is strongly faithful if and only if $G \curvearrowright L$ is strongly hyperbolic;
- (ii) *if L is compact and contains more than 2 elements, then L is an (F)-boundary for G;*
- (iii) *if L is not compact then it is nowhere compact (i.e. every compact subset of L has empty interior).*

An open question: Does every Powers group have a (compact) (H)-boundary? This would complete the analogy between C*-simple groups and Powers groups and (F)-boundaries and (H)-boundaries.

Example 7.3. Some examples of Powers groups:

- (*i*) Free products G * H with $|G| \ge 2$ and $|H| \ge 3$ acting on the boundary of the corresponding Basse-Serre tree.
- (*ii*) Non-soluble subgroups of $PSL_2(\mathbb{R})$ acting on suitable subsets of $\partial \mathbb{H}$.
- (*iii*) Torsion-free non-elementary Gromov-hyperbolic groups acting on their Gromov boundary.
- (*iv*) Mapping class groups of surfaces of genus \geq 1 acting on the boundary of the corresponding Teichmüller space.